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ABSTRACT: - 

Fractional calculus developed only as the theoretical 
field of mathematics. Fractional differential equations play an 
important role in the study of various physical chemical and 
biological phenomenon’s many researchers are attracted from 
the field of theory methods and application of fractional 
differential equation. The research have developed arevarious 
method to obtain of techniques to obtained approximate 
solutions of both linear and nonlinear fractional differential and 
integral equations. In recent year we see that monograph’s 
Kalibas, Lakashminath [4], Podlibuny and Abbas [6-8], banas 
[10, 11] Darwish [12-13], Dhage [20-24] and B.D.Karande [1] 
and there references. In this paper we study the existence of locally attractive solution is of the following 
nonlinear quadratic volterra   integral equation of fractional order. 

 

푥(푡) = [푓(푥(푡)][푞(푡) +
1

Γ(훼)
푔 푡, 푥(푠)
(푡 − 푠)  푑푠]                             1.1 

 
푓표푟 푎푙푙 푡휖푅  푎푛푑 훼(0,1)In the space of real function defined continuous bounded or unbounded intervals푅 . In 
the next section we give some basic definition and theorem which are used in further in this paper.We proceed the 
generalization the results are obtained. 
 
PRELIMINARIES 
 Let 퐿 (푎, 푏)bethe lebesuge intergable function. On interval ( a, b) then let 푥 ∈ 퐿 (푎, 푏)푎푛푑 훼 > 0 be a 
fixed number of Riemann-Liouville fractional integral order 훼 표푓 푓푢푛푐푡푖표푛 푥(푡)푡ℎ푒푛 
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퐼 푥(푡) =
1

Γ(훼)
푥(푠)

(푡 − 푠)
훿푠      , 푡휖(푎, 푏)                                    2.1 

 
Where Γ(훼)-does gamma function [Kalibus]. It may show that fractional integral space 퐿 (푎, 푏) into it self has 
some of the properties [see 10-12]. 

Let푋 = 퐵퐶(푅 ) be the space continuous bounded and let Ω be the subset of X. Let a mappingA:X→X on 
the operator consider the following equations namely  

 
푥(푡) = (푝푥)(푡)                                      2.2 

 
푓표푟푎푙푙 푡휖푅 .Below given different characterization of solution for the operator on 푅 . We need the following 
definitions in the sequel. 
 
2.1Definition:We say that the equation 2.2 are locally attractive if there exists an 푥 ∈ 퐵퐶(푅  )푎푛푑 푟 > 0 such 
that for all solution푥 = 푥(푡)푎푛푑 푦 = (푡) of equation 2.2belong 퐵  (푥 푟)Ω   푓표푟 푡 ≥ 푇. 
 

lim 
→

  (푥(푡) − 푦(푡)) = 0                                      2.3                
 
2.2Defination: an operator P: X→X iscalled Lipschitz if there exist constant k such that ‖푝푥 − 푝푦‖ ≤
‖푋 − 푌‖ 푓표푟 푎푙푙 푥,푦 ∈ 푋 the constant is called Lipschitz constant of P on X. 
 
2.3Defination: [Dugundji and Granas] an operator Banach space X into itself is called compact subset of S. If 
any bounded set of X P(S) is relatively compact subset of X. If P is continuous and compact then it is called 
completely continuous on X. 
 We seek the solution of (1.1) in the space 퐵퐶(푅  ) is continuous and bounded real valued function 
defined on 푅  .Define a standard supremum norm‖. ‖ and multiplication “.”  In 퐵퐶(푅 ) by 
 

‖푥‖ = 푆푢푝 { 푥(푡): 푡 ∈ 푅 }, 
 

(푥,푦)(푡) = 푥(푡)푦(푡) 푡 ∈ 푅                      2.4 
 
Clearly퐵퐶(푅  )  become Banach space with Banach space with respect to above norm and then multiplication in it 
by 퐿 (푅 ) we denote the space of Lebesguge integrable function on 푅  with the norm ‖. ‖  defined by  
 
   ‖푋‖ = ∫ |푥(푡)|푑푡 
 
We employ a hybrid fixed point theorem of Dhage [14] for proving the existing results, 
 
2.4Theorem [Dhage14] :Let  s  be closed convex and bounded subset of Banach space X and let 퐹:퐺:푆 → 푆   be 
two operators satisfying 
a)  F is Lipschitz with Lipschitz constant K 
b) G is completely continuous. 
c) 퐹푥퐺푥 ∈ 푆 푓표푟 푎푙푙 푥 ∈ 푆. 
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d) 푀 < 1 푤ℎ푒푟푒 푀 = ‖퐺(푆)‖ = 푆푢푝 {‖퐺(푥)‖:푥 ∈ 푆} 
Then the operator equation, 

퐹푥퐺푥 = 푥 
has a solution . Aset of all solution in compacts. In case the lim. (2.3) is uniform with respect to the set 

퐵(푥 푟)Ω i. e. when each ∈ > 0 there exist T>0.such that|푥(푡) − 푦(푡)| <∈  ∀푥,푦 ∈ 퐵(푥 푟) ∩ Ω  푎푛푑  
푡 ≥ 푇We say that the solution is uniformly locally attractive. 
 

2.5Defination:The solution 푋 = 푋(푡) in equation 2.3 is said to the globally attractive if equation 2.4 holds for 
each solution y(t) of equation 2.3. 
 
Existence Result 
We consider the following hypothesis in the sequel.  
푯ퟏ  The function 푓:푅 → 푅 is continuous and there exists a bounded function푙:푅 → 푅 with bound L satisfying  

|푓(푡, 푥) − 푓(푡,푦)| ≤ 푙(푡)|푥 − 푦|푓표푟 푎푙푙 푡 ∈ 푅 푎푛푑 푥,푦 ∈ 푅. 
푯ퟐ The function 푓 :푅 → 푅 defined 푓 = |푓(푡, 0)| is bounded with      푓 = 푆푢푝{푓 (푡): 푅 }. 
푯ퟑ  The function 푞:푅  is continuous and lim → 푞(푡) = 0. 
푯ퟒ The function 푔:푅 → 푅  is continuous moreover there exist a function m:푅 → 푅  belong continuous on 
푅 and function ℎ:푅 → 푅  with h (0) = 0 such that 

|푔(푡, 푠, 푥) − 푔(푡, 푠,푦)| ≤ 푚(푡)ℎ(|푥 − 푦|) 
푓표푟 푎푙푙 푡, 푠 ∈ 푅 푠푢푐ℎ 푡ℎ푎푡 푠 ≤ 푡 푎푛푑 푓표푟 푎푙푙 푥,푦 ∈ 푅. 

Further suppose let’s define the function푔 (푡) = max{|푔(푡, 푠, 표)| ∶ 0 ≤ 푠 ≤ 푡}  obviously the function 푔 is 
continuous 푅 . 
푯ퟓ  The function a, b:푅 → 푅  then defined formula푎(푡) = 푚(푡)푡 , 푏(푡) =  푔 (푡)푡  are bounded on 푅  and 
vanish at infinity that is , 
tlim → 푎(푡) = lim → 푏(푡) = 0. 
 
3.1Remark Note that the hypothesis (퐻  ) 푎푛푑 (퐻 ) holds than there exist constant 퐾 > 0 푎푛푑 퐾 > 0 
 퐾 = 푆푢푝{푞(푡) ∶ 푡 ∈ 푅 }                                                      3.1 
 퐾 = 푆푢푝 ( ) ( ) ( )

( ) ∶ 푡, 푟휖푅                                      3. 2 
 
3.2 Theorem: Assume that the hypothesis 퐻 − 퐻  holds furthermore if퐿(퐾 + 퐾 ) < 1, wehere 퐾 푎푛푑 퐾 are 
defined remark3.1 then 1.1 has at least one solution in the space 퐵퐶(푅 ) moreover solution of (1.1) are locally 
attractive on 푅  . 
 Set 푋 = 퐵퐶 푅 ,푅  consider the closed at origin O and of the radius r where r = ( )

( ) >  0 
Let’s define the operators 퐹훼 퐺 표푛 퐵 (0) by, 
 
 퐹푥(푡) = 푓 푡(푥)  
 
 퐺(푡) = 푞(푡) +

( ) ∫
( , , ( ))

( )
 푑푠                                          3.3  

 
푓표푟 푎푙푙 푡휖푅  
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Since the hypothesis (퐻 ) are holds the operator F is well defined the function FX is continuous and bounded 
view of hypothesis (퐻 )therefore퐹훼퐺 define the operator 퐹.퐺:퐵 (0) → 푋 will show that 퐹훼퐺 satisfy the 
requirement of 2.4 on 퐵 (0). Let 푥,푦 ∈ 퐵 (표) be arbitrary then by hypothesis 퐻  we get 
 

푓 푥(푡) − 퐹 푦(푡) = ‖푓(푡, 푥(푡) − 푓(푡,푦(푡)‖ 
 

≤ |(푡)|(푥)푡 − (푦)푡| 
 

≤ 퐿‖푋 − 푌‖ 
 

푓표푟 푎푙푙 푡 ∈ 푅  푡푎푘푖푛푔 푠푢푝푒푟푖푚푢푚 표푣푒푟 푡. 
 
   ‖퐹(푥) − 퐹(푦)‖ ≤ 퐿‖푋 − 푌‖ 
 
for all 푥,푦 ∈ 퐵 (0). 
 
This shows that F is Lipschitizion 퐵 (0) with Lipschitz constant L. 

II Now we show that G is continuous and compact operator 퐵 (0). First we show that G is continuous on 퐵 (0). 
Let’s fix arbitrary ∈ > 0 and take 푥,푦 퐵 (0)푠푢푐ℎ 푡ℎ푎푡  ‖푥 − 푦‖ ≤∈ then given 
 

|퐺(푥)(푡) − 퐺(푦)(푡)| ≤
1

Γ(훼)
푔(푡, 푠(푥(푠))) − 푔, (푡, 푠 푦(푠) )

(푡 − 푠)
푑푠 

 

≤
1

Γ(훼)
푚(푡)ℎ(|푥(푠) − 푦(푠)|)

(푡 − 푠)
푑푠 

≤
푚(푡)푡
퐹(훼 + 1) ℎ(푟) 

 

≤
푎(푡)

퐹(∝ +1) ℎ
(푟)                                    3.4 

 
Since h(r) is continuous on 푅  then its bounded on 푅 and there exists a nonnegative constant ℎ⊛ such 

that 
ℎ⊛ = sup{ℎ(푟): 푟 > 0}퐻푒푛푐푒  In hypothesis (퐻 ) there exists    T >0  such that  푎(푡) ≤ ( )

⊛  for  t > 
T thus for t >T we derive  
|(퐺(푥)(푡) − 퐺(푦)(푡))| < ∈              3.5 
Furthermore let’s assume that 푡 ∈ [0,푇]  then evaluating similarly we obtain. 
 

|(퐺푥)푡 − (퐺푦)푡| ≤
1
Γ훼

|푔(푡, 푠푥(푠) − 푔(푡, 푠푦(푠)|
(푡 − 푠)

푑푠 

 

≤
푇

Γ(훼 + 1)푊
(푔 휖)                             3.6 
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Where 푊 (푔, 휖) = sup { |푔(푡, 푠푥) − 푔(푡, 푠푦)| ∶ 푡, 푠 휖[0,푇], 
 

푥,푦휖[−푟 푟], |푥 − 푦| ≤∈ 
 
∴The uniform continuity of the function 푔(푡, 푠(푥)) on the set [0,푇] × [0,푇] × [−푟, 푟] we derive that 푊 (푔,∈) →
0 푎푠 휖 → 0  Hence above establish factor we conclude that the operator G ball 퐵 (0)continuously into itself. 

Now we show that G is compact 퐵 (0). It is enough to show every sequence{퐺푥 } in 퐺(퐵 (0))has 
Cauchy subsequence. In view of hypothesis 퐻 푎푛푑퐻   we infer that, 

 

|퐺푥 (푡)| ≤ |푞(푡)| +
1

Γ(훼)
|푔(푡, 푠, 푥 (푠)|

(푡 − 푠)
푑푠 

 

≤ |푞(푡)| +
1

Γ(훼)
|푔(푡, 푠, 푥 (푠) − 푔(푡, 푠, 0)|

(푡 − 푠) 푑푠 +
1

Γ(훼)
|푔(푡, 푠, 0)|
(푡 − 푠)

푑푠 

 

≤ |푞(푡)| +
1

Γ(훼)
푚(푡)ℎ(|푥 (푠)|

(푡 − 푠)
푑푠 +

1
Γ(훼)

푔 (푡)
(푡 − 푠)

푑푠       3.7 ≤ |푞(푡)| +
푚(푡)푡∝

Γ(훼 + 1) ℎ
(푟) +

푔 (푡)푡
Γ(훼 + 1)

 

 

≤ |푞(푡)| +
푎(푡)ℎ(푟) + 푏(푟)

Γ(훼 + 1)
 

 
≤  퐾 + 퐾  
 
for all 푡 ∈ 푅  taking the superimum over t. We obtain 푛 ∈ 푁.This shows that{퐺(푥 } is uniformly bounded 
sequence in 퐺(퐵 (0)). 
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