ISSN: 2230-7850
IMPACT FACTOR : 4.1625(UIF)
VOLUME - 6 |ISSUE - 12 | JANUARY - 2017

EXISTENCE OF LOCALLY ATTRACTIVE SOLUTION TO NONLINEAR QUADRATICVOLTERRA INTEGRAL EQUATION

Dr. B.D.Karande ${ }^{1}$, Pravin More ${ }^{2}$ and Sachin Kondekar ${ }^{3}$
Dept. Of Mathematics, M.U.College Udgir.
${ }^{2}$ Dept. Of Mathematics, B.S.S.ASC College Makni.
${ }^{3}$ Dept. Of Mathematics, Degloor college Degloor.

ABSTRACT: -

Fractional calculus developed only as the theoretical field of mathematics. Fractional differential equations play an important role in the study of various physical chemical and biological phenomenon's many researchers are attracted from the field of theory methods and application of fractional differential equation. The research have developed arevarious method to obtain of techniques to obtained approximate solutions of both linear and nonlinear fractional differential and integral equations. In recent year we see that monograph's Kalibas, Lakashminath [4], Podlibuny and Abbas [6-8], banas [10, 11] Darwish [12-13], Dhage [20-24] and B.D.Karande [1] and there references. In this paper we study the existence of locally attractive solution is of the following nonlinear quadratic volterra integral equation of fractional order.

$$
x(t)=\left[f(x(t)]\left[q(t)+\frac{1}{\Gamma(\alpha)} \int_{0}^{t} \frac{g(t, x(s))}{(t-s)^{1-\alpha}} d s\right]\right.
$$

for all $t \epsilon R_{+}$and $\alpha(0,1)$ In the space of real function defined continuous bounded or unbounded intervals R_{+}. In the next section we give some basic definition and theorem which are used in further in this paper. We proceed the generalization the results are obtained.

PRELIMINARIES

Let $L^{1}(a, b)$ bethe lebesuge intergable function. On interval (a, b) then let $x \in L^{1}(a, b)$ and $\alpha>0$ be a fixed number of Riemann-Liouville fractional integral order α of function $x(t)$ then
\qquad

$$
I^{\alpha} x(t)=\frac{1}{\Gamma(\alpha)} \int_{0}^{t} \frac{x(s)}{(t-s)^{1-\alpha}} \delta s \quad, t \in(a, b)
$$

Where $\Gamma(\alpha)$-does gamma function [Kalibus]. It may show that fractional integral space $L^{1}(a, b)$ into it self has some of the properties [see 10-12].

Let $X=B C\left(R_{+}\right)$be the space continuous bounded and let Ω be the subset of X . Let a mappingA: $\mathrm{X} \rightarrow \mathrm{X}$ on the operator consider the following equations namely

$$
x(t)=(p x)(t)
$$

forall $t \in R_{+}$. Below given different characterization of solution for the operator on R_{+}. We need the following definitions in the sequel.
2.1Definition:We say that the equation 2.2 are locally attractive if there exists an $x \in B C\left(R_{+}\right)$and $r>0$ such that for all solution $x=x(t)$ and $y=(t)$ of equation 2.2belong $B_{r}\left(x_{0} r\right) \Omega$ for $t \geq T$.

$$
\lim _{t \rightarrow \infty}(x(t)-y(t))=0
$$

2.2Defination: an operator $\mathrm{P}: \mathrm{X} \rightarrow \mathrm{X}$ iscalled Lipschitz if there exist constant k such that $\|p x-p y\| \leq$ $\|X-Y\|$ for all $x, y \in X$ the constant is called Lipschitz constant of P on X .
2.3Defination: [Dugundji and Granas] an operator Banach space X into itself is called compact subset of S. If any bounded set of $\mathrm{X} P(\mathrm{~S})$ is relatively compact subset of X . If P is continuous and compact then it is called completely continuous on X .

We seek the solution of (1.1) in the space $B C\left(R_{+}\right)$is continuous and bounded real valued function defined on R_{+}.Define a standard supremum norm $\|$. $\|$and multiplication "." In $B C\left(R_{+}\right)$by

$$
\begin{gather*}
\|x\|=\operatorname{Sup}\left\{x(t): t \in R_{+}\right\}, \\
(x, y)(t)=x(t) y(t) t \in R_{+}
\end{gather*}
$$

Clearly $B C\left(R_{+}\right)$become Banach space with Banach space with respect to above norm and then multiplication in it by $L^{1}\left(R_{+}\right)$we denote the space of Lebesguge integrable function on R_{+}with the norm $\|\cdot\|_{L^{1}}$ defined by

$$
\|X\|_{L^{1}}=\int_{0}^{\infty}|x(t)| d t
$$

We employ a hybrid fixed point theorem of Dhage [14] for proving the existing results,
2.4Theorem [Dhage14] :Let s be closed convex and bounded subset of Banach space X and let $F: G: S \rightarrow S$ be two operators satisfying
a) F is Lipschitz with Lipschitz constant K
b) G is completely continuous.
c) $F x G x \in S$ for all $x \in S$.
d) $M_{k}<1$ where $M=\|G(S)\|=\operatorname{Sup}\{\|G(x)\|: x \in S\}$

Then the operator equation,

$$
F x G x=x
$$

has a solution. Aset of all solution in compacts. In case the lim. (2.3) is uniform with respect to the set $B\left(x_{0} r\right) \Omega$ i. e. when each $\in>0$ there exist $\mathrm{T}>0$.such that $|x(t)-y(t)|<\in \forall x, y \in B\left(x_{0} r\right) \cap \Omega$ and $t \geq T \mathrm{We}$ say that the solution is uniformly locally attractive.
2.5Defination:The solution $X=X(t)$ in equation 2.3 is said to the globally attractive if equation 2.4 holds for each solution $\mathrm{y}(\mathrm{t})$ of equation 2.3.

Existence Result

We consider the following hypothesis in the sequel.
\boldsymbol{H}_{1} The function $f: R_{+} \rightarrow R$ is continuous and there exists a bounded functionl: $R_{+} \rightarrow R$ with bound L satisfying $|f(t, x)-f(t, y)| \leq l(t)|x-y|$ for all $t \in R_{+}$and $x, y \in R$.
\boldsymbol{H}_{2} The function $f_{1}: R_{+} \rightarrow R$ defined $f_{1}=|f(t, 0)|$ is bounded with $\quad f_{0}=\operatorname{Sup}\left\{f_{1}(t): R_{+}\right\}$.
\boldsymbol{H}_{3} The function $q: R_{+}$is continuous and $\lim _{t \rightarrow \infty} q(t)=0$.
\boldsymbol{H}_{4} The function $g: R_{+} \rightarrow R$ is continuous moreover there exist a function $\mathrm{m}: R_{+} \rightarrow R_{+}$belong continuous on R_{+}and function $h: R_{+} \rightarrow R_{+}$with $\mathrm{h}(0)=0$ such that

$$
|g(t, s, x)-g(t, s, y)| \leq m(t) h(|x-y|)
$$

for all $t, s \in R$ such that $s \leq t$ and for all $x, y \in R$.
Further suppose let's define the function $g_{1}(t)=\max \{|g(t, s, o)|: 0 \leq s \leq t\}$ obviously the function g_{1} is continuous R_{+}.
\boldsymbol{H}_{5} The function a, $\mathrm{b}: R_{+} \rightarrow R_{+}$then defined formula $a(t)=m(t) t^{\alpha}, b(t)=g_{1}(t) t^{\alpha}$ are bounded on R_{+}and vanish at infinity that is ,
$t \lim _{t \rightarrow \infty} a(t)=\lim _{t \rightarrow \infty} b(t)=0$.
3.1Remark Note that the hypothesis $\left(H_{3}\right)$ and $\left(H_{5}\right)$ holds than there exist constant $K_{1}>0$ and $K_{2}>0$

$$
\begin{align*}
& K_{1}=\operatorname{Sup}\left\{q(t): t \in R_{+}\right\} \\
& K_{2}=\operatorname{Sup}\left\{\frac{a(t) h(r)+b(t)}{\Gamma(\mathrm{r}+1)}: t, r \in R_{+}\right\}
\end{align*}
$$

3.2 Theorem: Assume that the hypothesis $H_{1}-H_{5}$ holds furthermore if $L\left(K_{1}+K_{2}\right)<1$, wehere K_{1} and K_{2} are defined remark3.1 then 1.1 has at least one solution in the space $B C\left(R_{+}\right)$moreover solution of (1.1) are locally attractive on R_{+}.
Set $X=B C\left(R_{+}, R\right)$ consider the closed at origin O and of the radius r where $\mathrm{r}=\frac{f_{0}\left(K_{1}+K_{2}\right)}{1-L\left(K_{1}+K_{2}\right)}>0$
Let's define the operators $F \alpha G$ on $B_{r}(0)$ by,

$$
\begin{align*}
& F x(t)=f(t(x)) \\
& G(t)=q(t)+\frac{1}{\Gamma(\alpha)} \int_{0}^{t} \frac{g(t, s, x(s))}{(t-s)^{1-\alpha}} d s
\end{align*}
$$

Since the hypothesis $\left(H_{1}\right)$ are holds the operator F is well defined the function FX is continuous and bounded view of hypothesis $\left(H_{4}\right)$ therefore $F \alpha G$ define the operator $F . G: B_{r}(0) \rightarrow X$ will show that $F \alpha G$ satisfy the requirement of 2.4 on $B_{r}(0)$. Let $x, y \in B_{r}(o)$ be arbitrary then by hypothesis H_{1} we get

$$
\begin{gathered}
|f(x(t))-F(y(t))|=\| f(t, x(t)-f(t, y(t) \| \\
\leq|(t)|(x) t-(y) t \mid \\
\leq L\|X-Y\|
\end{gathered}
$$

for all $t \in R_{+}$taking superimum over t.

$$
\|F(x)-F(y)\| \leq L\|X-Y\|
$$

for all $x, y \in B_{r}(0)$.
This shows that F is Lipschitizion $B_{r}(0)$ with Lipschitz constant L .
II Now we show that G is continuous and compact operator $B_{r}(0)$. First we show that G is continuous on $B_{r}(0)$. Let's fix arbitrary $\in>0$ and take $x, y B_{r}(0)$ such that $\|x-y\| \leq \in$ then given

$$
\begin{aligned}
& |G(x)(t)-G(y)(t)| \leq \frac{1}{\Gamma(\alpha)} \int_{0}^{t} \frac{|g(t, s(x(s)))-g,(t, s(y(s)))|}{(t-s)^{1-\alpha}} d s \\
& \leq \frac{1}{\Gamma(\alpha)} \int_{0}^{t} \frac{m(t) h(|x(s)-y(s)|)}{(t-s)^{1-\alpha}} d s \\
& \quad \leq \frac{m(t) t^{\alpha}}{F(\alpha+1)} h(r) \\
& \leq \frac{a(t)}{F(\alpha+1)} h(r)
\end{aligned}
$$

Since $\mathrm{h}(\mathrm{r})$ is continuous on R_{+}then its bounded on R_{+}and there exists a nonnegative constant h^{\circledast} such that

$$
h^{\circledast}=\sup \{h(r): r>0\} \text { Hence } \text { In hypothesis }\left(H_{5}\right) \text { there exists } \quad \mathrm{T}>0 \text { such that } a(t) \leq \frac{\Gamma(\alpha+1) \epsilon}{h \odot} \text { for } \mathrm{t}>
$$ T thus for $\mathrm{t}>\mathrm{T}$ we derive $|(G(x)(t)-G(y)(t))|<\epsilon \quad 3.5$ Furthermore let's assume that $t \in[0, T]$ then evaluating similarly we obtain.

$$
\begin{align*}
\mid(G x) t & -(G y) t \left\lvert\, \leq \frac{1}{\Gamma \alpha} \int_{0}^{t} \frac{\mid g(t, s x(s)-g(t, s y(s) \mid}{(t-s)^{1-\alpha}} d s\right. \\
& \leq \frac{T^{\alpha}}{\Gamma(\alpha+1)} W_{r}^{T}(g \epsilon)
\end{align*}
$$

Where $W_{r}^{T}(g, \epsilon)=\sup \{|g(t, s x)-g(t, s y)|: t, s \in[0, T]$,

$$
x, y \epsilon[-r r],|x-y| \leq \epsilon
$$

\therefore The uniform continuity of the function $g(t, s(x))$ on the set $[0, T] \times[0, T] \times[-r, r]$ we derive that $W_{r}^{T}(g, \in) \rightarrow$ 0 as $\epsilon \rightarrow 0$ Hence above establish factor we conclude that the operator G ball $B_{r}(0)$ continuously into itself.

Now we show that G is compact $B_{r}(0)$. It is enough to show every sequence $\left\{G x_{n}\right\}$ in $G\left(B_{r}(0)\right.$)has Cauchy subsequence. In view of hypothesis H_{3} and H_{4} we infer that,

$$
\begin{aligned}
& \left|G x_{n}(t)\right| \leq|q(t)|+\frac{1}{\Gamma(\alpha)} \int_{0}^{t} \frac{\mid g\left(t, s, x_{n}(s) \mid\right.}{(t-s)^{1-\alpha}} d s \\
& \leq|q(t)|+\frac{1}{\Gamma(\alpha)} \int_{0}^{t} \frac{\mid g\left(t, s, x_{n}(s)-g(t, s, 0) \mid\right.}{(t-s)^{1-\alpha}} d s+\frac{1}{\Gamma(\alpha)} \int_{0}^{t} \frac{|g(t, s, 0)|}{(t-s)^{1-\alpha}} d s \\
& \leq|q(t)|+\frac{1}{\Gamma(\alpha)} \int_{0}^{t} \frac{m(t) h\left(\left|x_{n}(s)\right|\right.}{(t-s)^{1-\alpha}} d s+\frac{1}{\Gamma(\alpha)} \int_{0}^{t} \frac{g_{1}(t)}{(t-s)^{1-\alpha}} d s \quad 3.7 \leq|q(t)|+\frac{m(t) t^{\alpha}}{\Gamma(\alpha+1)} h(r)+\frac{g_{1}(t) t^{\alpha}}{\Gamma(\alpha+1)} \\
& \leq|q(t)|+\frac{a(t) h(r)+b(r)}{\Gamma(\alpha+1)} \\
& \leq K_{1}+K_{2}
\end{aligned}
$$

for all $t \in R_{+}$taking the superimum over t . We obtain $n \in N$.This shows that $\left\{G\left(x_{n}\right\}\right.$ is uniformly bounded sequence in $G\left(B_{r}(0)\right)$.

REFERENCES

1. B.D.Karande and S.S. Yachwad, Existence of locally attractive solution to fractional order integral equation :IMS Journal volume
2. Saild Abbas, Globalattractively for fractional order delay partial integro-differential equation. : Springerjournal 2011.
3. A.Babakhani and V.Dafftar Geji,Existence of positive solution of nonlinear fractional differential equation: Journal of Mathematical analysis and Application vol. 278 no. 2 pp-434-442.
4. V.Lakshmikanatham, S.Leela and Vasundhara, Theory of Fractional Dynamic Systems, Cambridge academic Publishers,Cambridge (2009).
5. Lakshmikanatham and A.S. Vatsala, Basic theory of fractional differential equation: Nonlinear Anal Theory method.
6. Mohmad I. Abbas, on exisistance of locally attractive solution of nonlinear quadratic voletra integral equation of fractional order: journal mathematical analysis and applications (2005).
7. Mohamad I Abbass, Existence of locally attractive solutionof nonlinear quadratic equation of fractional order: Advance differential equation vol. 2(2010)1-11.
8. S. Abbas and M.Benchohra, Nonlinear quadratic Voltera Riemann-Liouville integral equations of fractional order, Nonlinear Anal.Forum,17(2012),1-9.
9. B.C.Dhage: A fixed point theorem in Banach algebra involving three operators with applications:Kyungpook mathematical Journal volume4 (2004) 145-155.
10. J. Bana's: Existence results for Voltera-Stieltijes quadratic integral equations on unbounded interval, Mathematica,candinavica vol.98,no. 1 pp.143-160,2006.
11. J.Bana's and B.C.Dhage, Global asymptotic stability of solutions of a functional integral equation: Nonlinear analysis theory, method and Applications vol.69,no. 7 1945-1952,2008.
12. M.A. Darwish, On global attractivelyof solutions of a functional integral equation : ElectronicJournal of Qualitative Theory of Differential Equations, vol,21 pp1-10-2007.
13. M.A.Darwish, J. Henderson, and D.O'Regan: Existence and asymptotic stability of solutions of a perturbed fractional functional integral equations with linear modification of the argument, Bull. Korean Math.Soc.,48(3)(2011),539-553.
14. I. Podlubny, Fractional Differential equation, Academic press San Diego.1993.
15. B.D.Karande, Fractional order functional Integro-Differential equation in Banach algebra: Malaysian mathematical Journal 1-16(2014).
16. M.M.EI Borai andM.I.Abas, Solvability of an infinite system of singular integral equation: Serdica mathematical Journal vol. 33 no 2-3 pp241-252-2007.
17. Banas J. Dhage B.C., Global asymptotic stability of solution of functional integral equation: nonlinear Anal Theory Method Application691945-1952 (2008)doi10.1016./J.n.a.2007.
18. E.Zeidle, Nonlinear functional Analysis and Its Applications: Part I, Springer Verlag,1985.
19. B.C Dhage: Nonlinear functional boundary value problem in Banach Algebras involving carthodaries :Kyungpook mathematical Journal mathematical Journal vol 46(2006) 427-441.
20. B.C.Dhage and D.O'Regan A fixed point theorem in Banach algebras with applications to functional integral equations Funct. Differential Equation 7(2000),259-267.
21. B.C Dhage, Nonlinear D-set-contraction mappings in partially ordered normed linear spaces applications to functional hybrid integral equations, Malaya J.Mat.3(1)(2015)62-85.
22. B.C.Dhage, On existence of extrmal solutions of nonlinear functional integral equations in Banach algebras,J.Appl.Math.Stochastic Anal. 3(2004)272-282
23. B.C.Dhage, S.K.Ntouyas, An existence theorem for nonlinear functional integral equation via fixed point theorem of Kransnoselskii-Schaefer, Nonlinear Sttud. 9(2003)3.7-317.
24. M.A.Karsnoselskii, Topological Methods in the theory of Nonlinear Integral Equations: Macmillan, New york 1964. [Translated from the Russian].
